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Abstract—Video streaming takes up an increasing propor-
tion of network traffic nowadays. Dynamic Adaptive Streaming
over HTTP (DASH) becomes the de facto standard of video
streaming and it is adopted by Youtube, Netflix, etc. Despite
of the popularity, network traffic during video streaming shows
identifiable pattern which brings threat to user privacy. In this
paper, we propose a video identification method using network
traffic while streaming. Though there is bitrate adaptation in
DASH streaming, we observe that the video bitrate trend remains
relatively stable because of the widely used Variable Bit-Rate
(VBR) encoding. Accordingly, we design a robust video feature
extraction method for eavesdropped video streaming traffic.
Meanwhile, we design a VBR based video fingerprinting method
for candidate video set which can be built using downloaded
video files. Finally, we propose an efficient partial matching
method for computing similarities between video fingerprints and
streaming traces to derive video identities. We evaluate our attack
method in different scenarios for various video content, segment
lengths and quality levels. The experimental results show that the
identification accuracy can reach up to 90% using only three-
minute continuous network traffic eavesdropping.

Index Terms—video streaming, network traffic, privacy, side-
channel attack

I. INTRODUCTION

Nowadays, online video streaming gets more and more
popular. Cisco report [1] shows that video streaming takes
up a great proportion of Internet traffic and it is also in a
rapid growth. The report predicts it will take up 82% of all
consumer Internet traffic by 2021. Adaptive Bitrate Streaming
(ABS) based on HTTP gradually becomes the major market
of video streaming due to its advantages of flexibility and
infrastructure-friendly property. By splitting videos into seg-
ments of multiple quality levels (bitrates), ABS enables a smart
client-driven bitrate adaptation. Dynamic Adaptive Streaming
over HTTP (DASH) is a representative implementation of
ABS. It has been an international standard since 2011 and
widely used by leading companies of video streaming, e.g.,
Youtube and Netflix.

Despite of DASH’s popularity, we find that its segment-
based data transmission brings a risk of side-channel attack
based on network traffic. Typically, a video in DASH is first
encoded into multiple copies of different quality levels using
Variable Bit-Rate (VBR) encoding. More specifically, different
average bitrates, which indicate different quality levels, are
used for each video copy, leading to different video size for
different bitrates. Each video copy is then split into video
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Fig. 1. DASH streaming shows distinct network traffic pattern owing to its
segment-based data transmission and VBR encoding. This can be used for
video identification by attackers.

segments of a fixed length of playback time. Due to video
complexity variation along time, the segment size also varies
along time for a video copy. Each time while streaming, a
client requests a video segment in a certain quality level for
playback. We find that such a mechanism in DASH results
in distinct traffic pattern due to segment-based transmission
and segment size variation of VBR. This can be used to
identify videos while streaming, which we call side-channel
video identification attack. As shown in Figure 1, by eaves-
dropping network traffic during video streaming, attackers can
recognize certain pattern of the traffic. Meanwhile, a dataset of
video fingerprints can be built using downloaded video files.
Attackers can then infer what video is currently streaming
by comparing the traffic pattern and video fingerprints. Such
traffic-based information leakage is quite serious due to the
popularity of video streaming.

Traffic-based side-channel attack has been brought into
focus for years. Related literature involves various scenar-
ios including website browsing [2], instant messaging [3],
etc [4], [5]. There are also different approaches targeting
video streaming [6], [7], [8]. Those approaches either need
to retrieve remote metadata [6], [7] or re-stream the same
video by attackers [8]. Thus, they are difficult to conduct in
practical environments. Different from those methods, we aim
to propose a seamless side-channel attack method for DASH
video streaming. We do not require any metadata or content
data from video streaming servers. Our main idea is extracting



video fingerprints merely from video files themselves, and
directly computing trace pattern from network traffic of video
streaming. Then we achieve seamless and efficient video
identification by combining the eavesdropped traffic and video
fingerprints.

The design of such a traffic-based attack method faces the
following challenges in practice. First, videos are encoded into
multiple quality levels in DASH while these quality levels
are neither prior known nor fixed. This brings challenges
for generating stable and representative video fingerprints.
Second, during video streaming, quality level is adaptively
selected each time according to network conditions, e.g.,
bandwidth. Thus traffic traces of streaming the same video
exhibit uncertain patterns. Last but not least, the eavesdropped
traffic may not correspond to exactly a complete video, e.g.,
a user only watch part of the video thus the eavesdropped
traffic only contain part of the video. Even the user watches
the entire video, it is time-consuming to eavesdrop the entire
video traffic for video identification.

Though there are different quality levels in DASH, we find
their bitrate variation trend is relatively stable for a given
video. Thus we propose a differential bitrate based method
to generate stable video fingerprints. For eavesdropped traffic
of video streaming, we first propose a method to partition and
aggregate it into segments. Then we generate effective traffic
pattern by differentiating every two consecutive segments.
Finally, we propose a Partial Dynamic Time Wrapping (P-
DTW) method to calculate the similarity distance between the
processed traffic pattern and video fingerprints. P-DTW can
achieve video identification even only using a portion of traffic
in video streaming.

We implement the side-channel attack method for video
identification in DASH streaming. Our method requires no
modification to video client and server. Our video fingerprint-
ing process uses video files available on most video providers
such as Youtube. Further, we evaluate performance of our
method for different videos and the evaluation results show
that identification accuracy can reach up to 90% with three-
minute eavesdropping.

In summary, we have the following contributions:
1) We propose a novel attack method to derive video iden-

tity from eavesdropped traffic during video streaming
without any modification to video client and server.

2) We propose a differential bitrate based feature extraction
method for generating stable video features which works
for practical adaptive streaming. We design an efficient
partial matching method to combine video fingerprints
and video stream features to derive video identity even
when the eavesdropped traffic is incomplete.

3) We implement our attack method and evaluate it for real
video streaming. The evaluation results show that the
identification accuracy can reach up to 90% using only
three-minute continuous eavesdropping.

The rest of this paper is organized as follows: Section II
introduces the background of DASH and tells the motivation
of our work. Section III introduces the process of video
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Fig. 2. In the process of DASH streaming, server is responsible for providing
video segments of multiple quality levels. At intervals, client sends requests
and receives video segments of specific quality levels on demand.

fingerprinting and pattern extraction from traffic traces in
DASH. Section IV shows our method of video identification
based on similarities of sequences. In Section V, we use a
dataset consisting of videos of various genres and evaluate
our method. Section VI introduces the related work and
Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Basics of DASH

The whole process of DASH is described in Figure 2. On
the server side, videos are pre-processed including encoding
to multiple quality levels and splitting into segments. Colored
lines in the figure represent available video segments of
specific quality levels, i.e., 500, 1000 and 1500 kbps. Different
from classic video streaming protocols, HTTP-based DASH
streaming can be regarded as a series of file transmission
and it follows classic request-and-reply model. Initially, video
client sends a request to server for a description file which
contains the metadata describing all the segments and their
quality levels. After receiving and parsing the description file,
video client requests for video segments on demand. Bitrate
adaptation is client-driven and achieved in video segment.
For example, in Figure 2, a higher quality level is chosen
when available bandwidth increases otherwise a lower level is
chosen.

B. VBR Encoding

On server side, videos are encoded into multiple qual-
ity levels. There are two common encoding schemes called
Constant Bit-Rate (CBR) and Variable Bit-Rate (VBR). As
the name suggests, CBR means that the rate at which the
output data is consumed is constant. As opposed to CBR,
VBR specifies an average bitrate constraint and varies the
output data amount of video per time slot according to
media complexity. Usually, the output of CBR has larger size
than that of VBR. Considering streaming efficiency, VBR is
adopted in most practical streaming services. To explain the
effect of VBR encoding, we use a one-minute video clip as
an example. It is encoded using H.264 and generates three
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Fig. 3. Video bitrate varies though VBR specifies the quality level. For a
video in different quality levels, bitrate trends show similar patterns.

different quality levels, i.e., 500, 1000 and 1500 kbps. Figure 3
shows their respective data amount per second. Although the
average bitrate is fixed, the data amount per second varies
as a result of VBR. Furthermore, even in different quality
levels, bitrate trend follows a specific pattern which implicitly
indicates the video identity. This phenomenon inspires our idea
of video fingerprinting.

C. Traffic of DASH

To investigate the traffic of DASH, we separately stream
three different videos named Big Buck Bunny, Hockey Prodigy
and Tears of Steal using DASH. For consistency, all of these
three videos are encoded in an average bitrate of 1000 kbps
and chunked in 6-second segment. Their respective traffic
traces are shown in Figure 4. As explained previously, network
traffic of DASH actually indicates periodic segment down-
loads. Thus, traffic traces of different videos show distinct
patterns as figure shows.

Further, DASH video streaming has three main characteris-
tics which make it more vulnerable. First of all, streaming
process shows traffic peaks because of its segment-based
transmission. Thus, the traffic trace pattern is more distinct
than continuous data transmission. Second, transmitted video
segments are strictly in order. In other words, video segments
arrive in a fixed sequence corresponding to the playback order.
Third, different from webpages, video streaming normally
has longer life cycle and there is sufficient traffic data for
completing attack during one single session.

In summary: On one hand, though one video can be
encoded in different quality levels, its bitrate trend is invariant
due to the mechanism of VBR. On the other hand, DASH
streaming follows a periodic segment-based data transmission.
The resulting network traffic shows distinct patterns while
streaming different videos. It is possible to identify streaming
videos by eavesdropping network traffic. However, it is quite
challenging to finding a good match between video bitrate
trend and the traffic pattern. Moreover, due to bitrate adap-
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Fig. 4. DASH’s segment-based transmission produces traffic peaks while
streaming. The resulting traffic traces show distinct patterns while streaming
different videos.
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tation of DASH, transmitted video segments vary in quality
level which makes traffic pattern unstable.

III. VIDEO FINGERPRINTS AND TRAFFIC PATTERNS

As DASH adopts fixed length of video segment, we fin-
gerprint videos based on segmentation rules. Given a video
of n seconds, we calculate the data amount per second and
get a sequence denoted as aaa = (a1, a2, . . . , ai, . . .). However,
by this naive means, different quality levels result in different
fingerprints. For this problem, we propose a differential-based
method. For any adjacent data amount ai and ai−1, we use
Equation 1 to calculate the differential between them. For con-
sistency without loss of generality, we set r1 = 0 to represent
no differential at the beginning. Thus, video fingerprints can
be represented by rrr = (r1, r2, . . . , ri, . . .). It eliminates the
influence of multiple quality levels and emphasizes the bitrate
trend.

ri = fdiff (ai, ai−1) = (ai − ai−1)/ai−1 (1)

We denote transmitted data amount every second as bt at
time t. Here, t is constrained to 1 ≤ t ≤ T and T is
the whole eavesdropping period. In DASH, network traffic
mostly consists of these two parts: client’s request for new
segments and server’s reply with video segment data. The
former as HTTP request is negligible because it is very small
in comparison with the latter replied video data. In addition,
DASH’s specific MPD file also need to be transmitted before
streaming. It also can be ignored because its amount is only
several kilobytes. Thus, network traffic can be regarded as
video data amount transmitted from server to client. In the



Algorithm 1: fper(bt, ε, τ) aggregates network traffic.

Input : bt(1 ≤ t ≤ T ): Throughput per second.
ε: Throughput threshold.
τ : Maximum time interval of one period.

Output: ppp: Data amount per period.

Init(pi) = 0 ; // Empty each period.
i = 1 ; // Start period index from 1.
t′ = 0 ; // Start time of each period.
for t← 1 to T do

// There is little data amount.
if b(t) < ε then continue ;
// Interval exceeds the maximum.
if t− t′ > τ then

i ++ ; // Skip to the next period.
t′ = t ; // Update start time.

end
pi += bt; // Add to current period.

end
return ppp = (p1, p2, . . . , pi, . . .)

histogram in Figure 5 for example, the traffic peaks in the
figure are mostly caused by video data transmission.

In DASH, segment length refers to the playback time
for player consuming the segment which is normally fixed.
Video segment size does not strictly correspond to the traffic
peaks because there are no segment boundaries in traffic.
When network quality gets poor, transmission of one segment
may result in several continuous traffic peaks. Fortunately,
there are two observations we can rely on. First, the data
amount of one video segment is limited by global segment
length. Normally, in order to ensure a smooth video streaming
experience, segment size is not too large so the data amount
of one video segment does not need very long transmitting
time. Second, DASH’s buffer-based strategy determines that
video player keeps downloading video segments until the
buffer is full. During the stable video streaming process, the
interval between two downloads of video segments is normally
stable. Based on these two observations, we design a function
fper(bt, ε, τ) described in Algorithm 1 to aggregate traffic data
into periods. Here, we use the term period to represent the
time range in which one segment is completely transmitted.
In this function, it takes three arguments. The first bt is the
sequential measures of traffic data per second. The second
argument ε is responsible for denoising by filtering out very
low data amount. The last τ means the maximum length of
time one period covers. By clustering the measures close to
each other in time, we can get a sequence of data amount in
periods denoted as ppp = (p1, p2, . . . , pi, . . .) returned by fper.
It is illustrated using green dashed boxes in Figure 5.

After traffic aggregation, the absolute time information of
transmission is dropped. It is reasonable because absolute time
of transmitting each video segment can be greatly influenced
by network quality and adaptation strategies. Thus, it is neither
meaningful nor stable as a feature for further video identifi-

cation. In contrast, transmission order of segments remains
invariant.

IV. VIDEO IDENTIFICATION

A. Video Fingerprinting

By definition in Section III, one ri actually corresponds to
one time unit, that is, one second. However, video data trans-
mission is in segment which normally lasts several seconds.
Thus, fingerprints have to be aggregated into segments. we
denote segment length as a constant value L. The essential of
video fingerprinting is to split the sequence rrr into chunks each
of which contains L measures.

Based on Equation 1, we have an equivalent form of it to
represent data amount ai:

ai =

j=i∏
j=1

(rj + 1)a1

Then, we sum up every L seconds of data amount as
Equation 2 shows. We use si to represent the total data amount
in i-th segment. We use R(ri, L) to represent the part related
to video fingerprints and segment length.

si = a(i−1)L+1 + a(i−1)L+2 + . . .+ a(i−1)L+L

=

j=L∑
j=1

a(i−1)L+j

=

j=L∑
j=1

k=(i−1)L+j∏
k=1

(rk + 1) a1

= R(ri, L) a1

(2)

Finally, we use fdiff to calculate differential between
segments denoted as dfpi in Equation 3. We set dfp1 = 0 to
show zero initial differential.

dfpi =

{
0 if i = 0

fdiff (si, si−1) =
R(ri,L)−R(ri−1,L)

R(ri−1,L) if i > 1
(3)

Now, given a segment length L and the bitrate trend
rrr, we can compute effective video fingerprints dddfp =
(dfp1 , dfp2 , . . . , dfpi , . . .) accordingly.

B. Traffic Pattern Extraction

In Section III, we compute ppp = (p1, p2, . . . , pi, . . .) in
accordance with video segments using the measures of traffic
per second. Here, pi represents data amount transmitted in i-
th period. Though, video data is transmitted in segment order
according to DASH protocol. Bitrate adaptation as the most
significant feature of DASH results in multiple-level traffic
while transmitting video segments in different quality levels.
Therefore, it is inappropriate to use the absolute data amount
within each period pi. Instead, we use differential function
fdiff in Equation 1 to calculate the traffic differential between
periods. Therefore, we have Equation 4 in which dtri represents
the i-th differential data amount. Similarly, we set dtr1 = 0 to
indicate no traffic differential at the beginning. It is an effective



and stable traffic pattern which can be further used for video
identification.

dtri =

{
0 if i = 0

fdiff (pi, pi−1) =
pi−pi−1

pi−1
if i > 0

(4)

C. Similarity Measurement

After eavesdropping network traffic while streaming for
some time, we can work out its traffic pattern dddtr =
(dtr1 , d

tr
2 , . . . , d

tr
i , . . .). Meanwhile, for each video in dataset,

we calculate video fingerprints dddfp = (dfp1 , dfp2 , . . . , dfpi , . . .)
according to Equation 3. Video identification is to find out
which video is most likely to generate the traffic pattern. For
this purpose, similarities between dddtr and each dddfp of different
videos need to be computed and then compared. This problem
can be regarded as a classic temporal series matching problem.
Given a traffic pattern, the video fingerprints which has the
highest similarity to it is chosen as its matched one.

Methods of series matching problem customizing for vari-
ous applications have been proposed, e.g., Discrete Wavelet
Transform (DWT), Discrete Fourier Transform (DFT), Dy-
namic Time Warping (DTW) and Symbolic Aggregate ap-
proXimation (SAX). However, in our problem, there are two
important characteristics which cannot be neglected. The first
one is that the number of traffic measures may be quite
few when eavesdropping lasts only a short time. This makes
statistics-based methods unfeasible. Second, the traffic pattern
may only correspond to a portion of the whole video. Thus,
partial matching has to be considered in similarity calculation.

Before measuring similarity, we need to make sequences
normalized to the same scale. Z-normalization, also known
as “Normalization to Zero Mean and Unit of Energy”, is a
well-known transformation of sequences. Given a sequence,
the formulation of Z-normalization is:

Z(xi) =
xi − µ
σ

where µ is the mean of sequence and σ is the standard
deviation. By applying Z-normalization, elements of sequences
can be scaled into a fixed range. Original sequence features
which help to focus on the structure are preserved. Neverthe-
less, it does not work for our problem because of the two
characteristics we mention before. When the length of dddtr is
much smaller than that of dddfp, it is unreasonable to use global
mean and variance on the short sequence, i.e., dddtr. Further, it
is sensitive to outliers because global statistics are used. Thus,
a more robust and stable normalization scheme is needed here.
Sigmoid function

S(xi) =
1

1 + e−xi

meets our requirements because it is independent from global
statistics. Also, it preserve the trend of sequences. After
applying sigmoid transformation, sequences are scaled into
(0, 1). Therefore, we have:

Dfp
i =S(dfpi ) ∈ (0, 1)

Dtr
i =S(dtri ) ∈ (0, 1)

Video 
fingerprints Traffic pattern

Fig. 6. Similarity between the traffic pattern and video fingerprints is
computed using temporal sequence analysis. Traffic pattern may correspond
to a part of whole video fingerprints because of short time of eavesdropping.
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Fig. 7. P-DTW relaxes the constraint of matching every element to support
partial matching between sequences.

Figure 6 illustrates the sequences of video fingerprints and
traffic pattern to be matched. They are both normalized to
(0, 1). We use DTW for calculating similarity. Its essential
idea is aligning two sequences by warping the time axis
iteractively to find the optimal match between them. However,
classic DTW takes full length of sequences into calculation
of cumulative cost. Thus, inspired by the open-end DTW
algorithm [9], we propose a variant of DTW named P-DTW
for partial matching. The difference between classic DTW
and P-DTW is illustrated in Figure 7. In classic DTW whose
warping curve is shown in Figure 7a, every single element
of both sequences are tried to be matched. In other words,
it means series heads and tails are constrained to match
each other. While in Figure 7b, this constraint is relaxed for
achieving partial matching. Obviously, this is more reasonable
in our problem since traffic pattern correspond to a part of
a video in most cases. In P-DTW, we regard the sequence
of video fingerprints DDDfp as a template sequence and traffic
pattern DDDtr is a query sequence. The principle of P-DTW is
to find a proper sub-sequence on the template to minimize
its distance to the query sequence. For this purpose, we use
a naive method which iterates on all the sub-sequences of
template. The subsequence which reaches the smallest distance



Algorithm 2: fP−DTW : P-DTW for Partial matching.

Input : stem: Template sequence.
sque: Query sequence.

Output: dist: Similarity distance between sequences.

D = {} ; // A set of distances.
foreach sub-sequence s′ in stem do

// Index starts from 1.
n = length(sque); m = length(s′);
// Initialize a n×m matrix.
M = array[0 : n, 0 : m];
M [0, 0] = 0;
for i = 1 to n do M [i, 0] = +∞ ;
for i = 1 to m do M [0, i] = +∞ ;
for i = 1 to n do

for j = 1 to m do
// Euclidean distance.
cost = d(sque[i], s′[j]);
// Asymmetric step pattern.
M [i, j] = cost+min(M [i− 1, j],M [i−
1, j − 1],M [i− 1, j − 2]);

end
end
D.append(M [n,m]/n);

end
return dist = min(D);

is chosen as the final similarity. The whole process of P-DTW
is shown in Algorithm 2.

In the idea of DTW, step pattern is critical for cumulative
cost computation and distance normalization as well. Various
step patterns have been proposed for solving different prob-
lems. The most common step pattern is the symmetric pattern
described as min(M [i− 1, j], 2 ∗M [i− 1, j− 1],M [i, j− 1]).
Its corresponding normalization denominator is the sum of
sequence lengths which is stable because of global alignments.
While in P-DTW, the length of sub-sequence is unstable.
Thus, in P-DTW, we use an asymmetric step pattern, i.e.,
min(M [i − 1, j],M [i − 1, j − 1],M [i − 1, j − 2]). By this
means, we can use the length of query sequence n to get a
reasonable normalization.

Given a traffic pattern DDDtr and video fingerprints DDDfp, their
similarity distance can be measured by:

dist = fP−DTW (DDDtr,DDDfp) ∈ [0, 1) (5)

A smaller dist indicates a higher probability for the given
traffic pattern matching the fingerprints.

D. Video Identification

Given a traffic pattern and a dataset containing n videos,
there are n distances generated. Empirically, a threshold of
distance can be set for identifying the target video. Setting
such threshold requires distances between matched pairs and
unmatched pairs are distinguishable enough and keep stable to
multiple variables. For evaluating this, three factors including

eavesdropping time, segment length and video content are
considered and the results are illustrated in Figure 8. First,
we use 10-minute traffic trace of streaming a certain video in
a fixed 6-second segment length. We randomly truncate sub-
traces representing different eavesdropping time for calculat-
ing dist to different video fingerprints. The results are shown
in Figure 8a. Red boxes show the distances between traffic
traces and their matched video fingerprints. These distances
are significantly below those unmatched ones. Besides, as
eavesdropping time varies, distances of matched pairs keep
stable. Second, we keep eavesdropping network traffic for 2
minutes in different segment lengths. Figure 8b shows the
results in this case. We can see that the distances of matched
pairs are stable and all below the unmatched ones when
segment length changes. Finally, by controlling video content,
we keep eavesdropping time 2 minutes and segment length 6
seconds. Eight different video clips are streamed respectively
and the results are shown in Figure 8c. Though discriminabil-
ity between matched and unmatched pairs slightly vary in
different videos, similarity distances mostly keep stable and
discriminative. Thus, it is reasonable to set a threshold of
similarity distance for identifying videos.

V. IMPLEMENTATION AND EVALUATION

A. Experimental Settings

We implement a typical DASH workflow using FFmpeg
and GPAC toolkit. FFmpeg is used for video encoding and
MP4Box provided by GPAC is used for splitting videos into
segments. A remote HTTP server is used for hosting video
data. The client is a PC and we use Osmo4 included in
GPAC as a video player. Video client is connected to a
“hacked” router through ethernet. In order to simulate a case
of eavesdropping network traffic, we use Ettercap which is
widely used for capturing network traffic.

We collect 200 videos as a dataset and the average playback
length is 726 seconds. It contains various content including
animation, sports, action, etc. Each video is encoded in three
different quality levels, i.e., 800, 1200 and 1600 kbps. As
quality levels used by streaming servers are unknown in reality,
these three levels are different from those used in DASH
streaming in our experiments. Actually, video fingerprints keep
stable as bitrate trend is invariant in different quality levels. To
illustrate this, Figure 9 shows the normalized bitrate traces of
video copies in different quality levels. They are very similar
due to Equation 1 which adopts a bitrate differential instead of
absolute bitrate. From our dataset, twelve videos are randomly
selected for DASH streaming. Segment length varies in 4, 6
and 8 seconds. Quality levels are adapted in 500, 1000, 1500
and 2000 kbps.

B. Evaluation of Similarity Measurement

There are two parameters we have to determine according to
Algorithm 1. The data amount threshold ε and the maximum
period length τ . Normally, data amount of traffic noise such
as MPD transmission and HTTP requests is far smaller than
that of video segment data in orders of magnitude. Therefore,
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Fig. 8. Similarity distance dist keeps stable for measuring similarity between the traffic pattern and video fingerprints.
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Fig. 9. This example is generated by encoding a certain raw video in four
different quality levels. These four copies have very similar bitrate trend.

we use a small ε = 20 kilobytes in our experiments. As for τ ,
it is directly related to segment length and adaptation strategy.
While in stable streaming, time interval between transmissions
of video segments is around one segment length. Thus, τ is
theoretically between 0 to segment length L and we set τ =
L/2 in our experiments.

For different series matching methods including Minimal
Variance Matching (MVM) [10] which allows arbitrary skips
of elements in template sequence, we evaluate their perfor-
mance. We use traffic data generated with 2-minute eaves-
dropping and calculate its similarity distances with video
fingerprints. The results are shown in Figure 10a. Classic DTW
unsurprisingly has poor performance because of its global
alignments. MVM brings overall low distances but the discrim-
inability is still below that of P-DTW. Then, we use P-DTW
for computing similarity threshold for video identification. We
use 1000 traffic traces in different conditions varying in video
bitrates, segment lengths and eavesdropping time. Figure 10b
shows false rates using different thresholds. We find that 0.019
is an appropriate threshold for minimizing identification false
rates. In the following evaluation of our method, we define
a uniform “accuracy” based on this threshold as follows.
Given an eavesdropped traffic trace, we randomly truncate
one thousand sub-sequences of a specific length which is to
be evaluated on. Then we use these sub-sequences for actual
performance evaluation. If and only if the similarity distance
between the traffic pattern and its matched video fingerprints
is below the threshold, it counts as a true test. So, the accuracy
is defined by the ratio of number of true tests to that of total
tests, i.e., one thousand.
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discriminability comparing with other
two methods.

0.010 0.015 0.020 0.025 0.030 0.035 0.040

0
.0

0
.2

0
.4

0
.6

0
.8

Threshold

F
a
ls

e
 r

a
te

False Positive

False Negative

(b) Threshold of P-DTW distance for
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Fig. 10. P-DTW is more effective than other methods and a threshold of
distance is further computed for video identification.

C. Single-bitrate Streaming

To begin with, we consider single-bitrate streaming. In our
experiments, two variables including video quality level and
segment length are controlled respectively. Video quality level
varies in 500, 1000, 1500 and 2000 kbps. Segment length
varies in 4, 6 and 8 seconds. For a given quality level and
segment length, traffic is eavesdropped for around 10 minutes
in each DASH session while streaming twelve videos from
our dataset. We evaluate the identification accuracy when
eavesdropping time varies. Figure 11 shows the results in
different cases. We find that identification accuracy is greatly
influenced by segment length while video bitrate has little
impact. It can be intuitively explained with the number of
traffic measures. When eavesdropping time is fixed, smaller
segment length leads to more traffic measures which reveal
more clues for identification.

D. Multiple-bitrate Adaptive Streaming

In order to investigate how bitrate adaptation influences
video identification accuracy, we design experiments of adap-
tive streaming. Video bitrate is adaptive in 500, 1000, 1500,
2000 kbps. Using Osmo4, we can manually select video
quality level for video segments while streaming. In this
experiment, bitrate adaptation is triggered in every one minute.
Traffic sub-traces of certain length are extracted by randomly
truncating from the complete trace accordingly. We compute
accuracy upper bound by manually removing the related
measure in traffic pattern. The results are shown in Figure 12.
The actual identification accuracy without manual interference
is very close to the upper bound.
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Fig. 11. Identification accuracy with different eavesdropping time in different cases.

Fig. 12. The influence of extra error caused by bitrate adaptation is limited
and it can be decreased with eavesdropping time getting longer.

Fig. 13. Identification accuracy of streaming different videos.

Finally, we evaluate the identification performance on dif-
ferent video content. Twelve videos are separately streamed in
adaptive bitrate with segment length of 6 seconds. Figure 13
shows the final results. The accuracy varies a little when
eavesdropping time is low and it gets up to 90% when the
eavesdropping time reaches 180 seconds.

VI. RELATED WORK

Information leakage in network traffic: Side-channel
attack using network traffic has raised widely concern as a
serious threat to user privacy. Shuo Chen et al. show the
severity and universality as such attack is based on funda-
mental characteristics of Internet despite encryption [11]. It
is ubiquitous in comparison with other features such as hard-

ware features [12]. Utilizing network traffic, multiple attacks
covering different purposes are proposed. Skype as a service
closely related to privacy is a typical case. Several works are
presented for analyzing network traffic of Skype [13], [3]
to detect user actions. In addition to Skype, websites also
can be recognized using network traffic analysis [14], [15],
[2]. User activities [16], [17], contextual localization [4] and
demographics [5] are likely to be revealed in network traffic.
If network traffic can be extended to general package-based
communication, it will lead to critical privacy leakage, e.g.,
location-based applications [18], [19], [20], [21].

Network traffic eavesdropping: As network traffic con-
tains implicit user information, traffic eavesdropping gets
its popularity in computer security. Organizations such as
enterprise network center or ISPs can directly monitor network
traffic. In addition, local adversaries can use Wi-Fi sniffers
to eavesdrop wireless traffic [16]. Routers may be hacked by
attackers in the same LAN and used for eavesdropping [22].
Some public access points are probability unsafe [23]. Even,
remote attackers can use network congestion to indirectly
monitor the traffic pattern of victim’s machine [24]. Network
delay can be utilized to achieve attacks too [25]. There is also
literature [26] introducing side-channel attacks by remotely
sending probes and observing round trip time.

Video fingerprinting and identifying: Saponas et al. pro-
pose an early attempt of identifying videos using network
traffic [27]. Aiming at video streaming in Slingbox, the authors
show potential information leakage caused by VBR. Different
from DASH, traffic traces in this work are directly processed
into segments of 100 milliseconds. A windowed DFT is
performed on the trace to achieve video identification by
matching against reference traces. Also based on VBR, Yali
et al. extract short and long range dependencies within video
traffic to construct video signatures [28]. Reed et al. study
Youtube video streaming in [6], [7]. They take advantage
of DASH and VBR for fingerprinting videos on Netflix by
parsing the video metadata. Another work related to ours
is from Schuster et al [8]. They use network traffic bursty
pattern for identifying videos but the method requires video
re-streaming in the same network with victim. Besides, video
fingerprinting method may inspire the identification of other
things such as pedestrians [29] in the future.



VII. CONCLUSION

Traffic-based attack in video streaming is a big threat to user
privacy. In this paper, we propose a seamless and efficient at-
tack method by eavesdropping network traffic while streaming.
Relying on the invariant of video bitrate trend caused by VBR
encoding, we design a robust video fingerprinting method. In
various conditions, our identification accuracy can get up to
90% using 3-minute traffic traces. We plan to conduct our
method on a larger dataset and explore its performance on
online video services such as Youtube and Netflix. Meanwhile,
as segment length has critical influence in our algorithm, an
automatic detection method of video segment length or even
streaming protocol is on our agenda. On the other hand, in
face of such information leakage, countermeasures considering
both network efficiency and streaming Quality of Experience
(QoE) are also worth further studying.
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